Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries.
نویسندگان
چکیده
This study examined whether inward rectifying K+ (KIR) channels facilitate cell-to-cell communication along skeletal muscle resistance arteries. With the use of feed arteries from the hamster retractor muscle, experiments examined whether KIR channels were functionally expressed and whether channel blockade attenuated the conduction of acetylcholine-induced vasodilation, an index of cell-to-cell communication. Consistent with KIR channel expression, this study observed the following: 1) a sustained Ba2+-sensitive, K+-induced dilation in preconstricted arteries; 2) a Ba2+-sensitive inwardly rectifying K+ current in arterial smooth muscle cells; and 3) KIR2.1 and KIR2.2 expression in the smooth muscle layer of these arteries. It was subsequently shown that the discrete application of acetylcholine elicits a vasodilation that conducts with limited decay along the feed artery wall. In the presence of 100 microM Ba2+, the local and conducted response to acetylcholine was attenuated, a finding consistent with a role for KIR in facilitating cell-to-cell communication. A computational model of vascular communication accurately predicted these observations. Control experiments revealed that in contrast to Ba2+, ATP-sensitive- and large-conductance Ca2+ activated-K+ channel inhibitors had no effect on the local or conducted vasodilatory response to acetylcholine. We conclude that smooth muscle KIR channels play a key role in facilitating cell-to-cell communication along skeletal muscle resistance arteries. We attribute this facilitation to the intrinsic property of negative slope conductance, a biophysical feature common to KIR2.1- and 2.2-containing channels, which enables them to increase their activity as a cell hyperpolarizes.
منابع مشابه
Hypertension attenuates cell-to-cell communication in hamster retractor muscle feed arteries.
This study examined whether hypertension attenuated cell-to-cell communication in skeletal muscle resistance arteries. Briefly, arteries feeding the retractor muscle of normotensive and hypertensive hamsters were cannulated, pressurized, and superfused with a physiological saline solution. Cell-to-cell communication was functionally assessed by application of vasoactive stimuli (via micropipett...
متن کاملEndothelium-dependent hyperpolarization in small gastric arteries.
OBJECTIVE In many blood vessels, stimulation of the endothelium with various vasoactive substances induces, besides the nitric oxide (NO) and prostacyclin pathways, a third mechanism evoking dilatation. It is based on hyperpolarization of the vascular smooth muscle cell membrane. In the present study, we investigated the existence of endothelium-dependent hyperpolarization in small gastric arte...
متن کاملFirst order phase transition and hysteresis in a cell's maintenance of the membrane potential - An essential role for the inward potassium rectifiers
Hysteretic behavior is found experimentally in the transmembrane potential at low extracellular potassium in mouse lumbrical muscle cells. Adding isoprenaline to the external medium eliminates the bistable, hysteretic region. The system can be modeled mathematically and understood analytically with and without isoprenaline. Inward rectifying potassium channels appear to be essential for the bis...
متن کاملExpression of homocellular and heterocellular gap junctions in hamster arterioles and feed arteries.
OBJECTIVES Conduction of vasoconstrictor and vasodilator responses in the microcirculation involves electrical coupling through gap junction channels among cells of the vascular wall. The present study determined whether reported differences in the properties of conduction along the arterioles of the epithelial hamster cheek pouch (CPA) and feed arteries of its retractor skeletal muscle (RFA) r...
متن کاملConduction of hyperpolarization along hamster feed arteries: augmentation by acetylcholine.
The conduction of vasodilation along resistance vessels has been presumed to reflect the electrotonic spread of hyperpolarization from cell to cell along the vessel wall through gap junction channels. However, the vasomotor response to acetylcholine (ACh) encompasses greater distances than can be explained by passive decay. To investigate the underlying mechanism for this behavior, we tested th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 291 3 شماره
صفحات -
تاریخ انتشار 2006